N2 dissociation on W(110): An ab initio molecular dynamics study on the effect of phonons.

نویسندگان

  • Francesco Nattino
  • Francesca Costanzo
  • Geert-Jan Kroes
چکیده

Accurately modeling the chemisorption dynamics of N2 on metal surfaces is of both practical and fundamental interest. The factors that may have hampered this achievement so far are the lack of an accurate density functional and the use of approximate methods to deal with surface phonons and non-adiabatic effects. In the current work, the dissociation of molecular nitrogen on W(110) has been studied using ab initio molecular dynamics (AIMD) calculations, simulating both surface temperature effects, such as lattice distortion, and surface motion effects, like recoil. The forces were calculated using density functional theory, and two density functionals were tested, namely, the Perdew-Burke-Ernzerhof (PBE) and the revised PBE (RPBE) functionals. The computed dissociation probability considerably differs from earlier static surface results, with AIMD predicting a much larger contribution of the indirect reaction channel, in which molecules dissociate after being temporally trapped in the proximity of the surface. Calculations suggest that the surface motion effects play a role here, since the energy transfer to the lattice does not allow molecules that have been trapped into potential wells close to the surface to find their way back to the gas phase. In comparison to experimental data, AIMD results overestimate the dissociation probability at the lowest energies investigated, where trapping dominates, suggesting a failure of both tested exchange-correlation functionals in describing the potential energy surface in the area sampled by trapped molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of van der Waals functionals to the calculation of dissociative adsorption of N2 on W(110) for static and dynamic systems.

The fundamental understanding of molecule-surface reactions is of great importance to heterogeneous catalysis, motivating many theoretical and experimental studies. Even though much attention has been dedicated to the dissociative chemisorption of N2 on tungsten surfaces, none of the existing theoretical models has been able to quantitatively reproduce experimental reaction probabilities for th...

متن کامل

Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles.

Using ab initio molecular dynamics (AIMD) calculations, we investigate the role of the van der Waals (vdW) interaction in the dissociative adsorption of N2 on W(110). Hitherto, existing classical dynamics calculations performed on six-dimensional potential energy surfaces based on density functional theory (DFT), and the semi-local PW91 and RPBE [Hammer et al. Phys. Rev. B 59, 7413 (1999)] exch...

متن کامل

Accurate Neural Network Description of Surface Phonons in Reactive Gas–Surface Dynamics: N2 + Ru(0001)

Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 142 10  شماره 

صفحات  -

تاریخ انتشار 2015